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ABSTRACT
PET is an imaging modality widely used in areas such as Oncol-
ogy, Neurology, Cardiology and Neuropsychology/Cognitive neuro-
science. Dynamic PET, in contrast to static PET, can identify tempo-
ral variations in the radiotracer concentration. Mathematical model-
ing of the tissue of interest in dynamic PET can be simplified us-
ing compartment models as a linear system where the time activity
curve of a specific tissue is the convolution of the tracer concentra-
tion in the plasma and the impulse response of the tissue containing
kinetic parameters. Since the arterial sampling of blood to acquire
the value of the tracer concentration is invasive, blind identification
to estimate both the blood input function and the kinetic parameters
has recently drawn attention. Several methods have been devel-
oped for this purpose, but the effect of the estimated blood on the
estimation of the kinetic parameters is not studied. In this paper,
we present a mathematical model to compute the error in the ki-
netic parameter estimates caused by the error in estimation of the
blood input function. Computer simulations show that analytical ex-
pressions we derive are sufficiently close to results obtained from
optimization. Our findings are conceptually important to observe
the effect of the blood function on kinetic parameter estimation, but
also practically useful to evaluate various blind methods.

Index Terms— Dynamic Positron emission tomography, kinetic
parameter estimation, blind methods, estimation of blood function

1. INTRODUCTION
Positron emission tomography (PET) is a functional imaging modal-
ity to observe the physiological processes in the body. To conduct a
PET scan, positron-emitting radioisotopes, as a tracer, are injected
into the living subject (usually into blood circulation). When positron
encounters and annihilates an electron, it emits two gamma rays in
reverse directions which will be sensed at two detectors at roughly
the same time. Hence it is possible to locate the source along the
line of response using a scanner around the subject. The data from
the detector is then used to reconstruct an image of the subject [1].

Temporal variation of the tracer concentration can be obtained
through dynamic imaging so that the physiological function of the
subject can be tracked more accurately. Therefore, dynamic imag-
ing is a useful tool for various clinical and research applications [2]–
[6].

A two-compartment model is used to simplify the kinetic model
of the tracer molecule of interest. In this model, the input Cp(t) is
the tracer concentration in the plasma, and the output is the time
activity curve (TAC). Let f(t) denote the TAC of a specific tissue,
then the relation between f(t) and the impulse response of the ith
tissue h(i)(t) containing the kinetic parameters is

f(t) = h(t) ∗ Cp(t). (1)

For two-compartment tissue modeling, h(t) is [1]

h(i)(t) = k
(i)
I · e−t·k(i)

O , (2)

where kI is the washin rate constant (uptake) and kO is the washout
rate constant.

Estimation of the kinetic parameters kI and kO based on f(t) re-
quires that the blood function Cp(t) is known. The classical method
of arterial sampling to obtain the blood function has several disad-
vantages: it requires well-trained medical personnel and poses a
health risk to the subject. Therefore, blind methods are developed
to estimate the kinetic parameters of the tissue response without
knowing input function. In such methods, the input function is esti-
mated along with the kinetic parameters of the tissue impulse model
of interest. Several studies have been done in the field, such as
maximum likelihood, cross relation methods, and several others,
see [8]– [11] and references therein.

For noisy TAC measurements we can use the following model

f (i)(tn) = h(i)(tn) ∗ Cp(tn) + ε(i)(tn), (3)

which can be written as

�f (i) = H(i)−→Cp + �ε(i), (4)

where H(i) is the convolution matrix of the impulse response of
the tissue for region i, Cp denotes the vector of the blood function,
and �ε(i) is the noise vector. Stacking different regions of interest
together, we can write the equations in the following form

−−−−→
TACs = H

−→
Cp + �ε. (5)

We can estimate the kinetic parameters and the blood function
by minimizing the following cost function

R = ‖−−−−→TACs− Ĥ
−→̂
Cp‖2. (6)

Several methods for blind kinetic parameter estimation has been
proposed, but no study has shown the effect of errors in the esti-
mated blood on the estimation of kinetic parameters. In this paper,
we develop a mathematical model that can compute this effect. Our
results can be used to calculate the error in the kinetic parameter
estimates steming from the errors in the blood function that is used.
Our derivations is on the implicit function theorem previously used
for static PET [12] and the Runge-Kutta methods [7].

Although, these errors in the parameters can be found perform-
ing a separate optimization for each of the error combinations in the
blood that we want to study, this is a very time consuming method,
considering that the optimization procedure is iterative. This is es-
pecially important when we are interested in pixel by pixel kinetic

1585978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



parameter estimation, and/or when the space of the erronous blood
functions we want to analyze is large. Based on the results of this
paper, the optimization need to be performed only once, and the
error propogation can be calculated very fast based on this single
optimization.

2. DERIVATION OF THE ERROR PROPOGATION
In this section, we explain how we can calculate the errors in the
kinetic parameters due to the error in the blood function. The esti-
mates of the kinetic parameters k̂I , k̂O are

[k̂I , k̂O] = arg min
k̂I ,k̂O

R([k̂I , k̂O], Ĉp). (7)

Our goal is to obtain the errors in the kinetic parameters ΔkI

and ΔkO stemming from the error in the blood function ΔCp. The
first step in this calculation is to calculate the derivatives of the im-
plicit estimator with respect to the elements of Cp(t). This calcula-
tion can be performed by using the chain rule and implicit function
theorem [12].

For a solution kI , kO that minimizes the cost function the partial
derivatives of cost function with respect to the kinetic parameters is
zero

0 =
∂

∂kI
R([k̂I , k̂O], Ĉp)

∣∣∣
kI=k̂I

,

0 =
∂

∂kO
R([k̂I , k̂O], Ĉp)

∣∣∣
kO=k̂O

. (8)

Let us define an implicit function

[k̂I , k̂O] = g(Ĉp) = [g1(Ĉp), g2(Ĉp)]′. (9)

that maps the Ĉp into an estimate[k̂I , k̂O]. We can rewrite (8) as

0 =
∂

∂kI
R(g(Ĉp), Ĉp),

0 =
∂

∂kO
R(g(Ĉp), Ĉp). (10)

By applying the chain rule to this equation, we can differentiate the
above two equations with respect to Ĉp and obtain

0 =
∂2

∂k2
I

R(g(Ĉp), Ĉp)
∂

∂Ĉp

g1(Ĉp)

+
∂2

∂kI∂kO
R(g(Ĉp), Ĉp)

∂

∂Ĉp

g2(Ĉp)

+
∂2

∂kI∂Ĉp

R(g(Ĉp), Ĉp),

0 =
∂2

∂kO∂kI
R(g(Ĉp), Ĉp)

∂

∂Ĉp

g1(Ĉp)

+
∂2

∂k2
O

R(g(Ĉp), Ĉp)
∂

∂Ĉp

g2(Ĉp)

+
∂2

∂kO∂Ĉp

R(g(Ĉp), Ĉp). (11)

In matrix form, where ˆCpn is the nth sample of the estimated input
blood function.[
− ∂2

∂kI∂ ˆCpn
R

− ∂2

∂kO∂ ˆCpn
R

]
, =

[
∂2

∂k2
I

R ∂2

∂kI∂kO
R

∂2

∂kO∂kI
R ∂2

∂k2
O

R

][
∂g1(Ĉp)

∂ ˆCpn
∂g2(Ĉp)

∂ ˆCpn

]
. (12)

Then a simple matrix inversion provides[
∂g1(Ĉp)

∂ ˆCpn
∂g2(Ĉp)

∂ ˆCpn

]
=

[
∂2

∂k2
I

R ∂2

∂kI∂kO
R

∂2

∂kO∂kI
R ∂2

∂k2
O

R

]−1 [
− ∂2

∂kI∂ ˆCpn
R

− ∂2

∂kO∂ ˆCpn
R

]
, (13)

The elements of the matrix and the vector on the right hand side
can be calculated based on the cost function

∂2R

∂k2
I

= 2
−→
Cp
′ ( ∂H

∂kI

)′ ∂H

∂kI

−→
Cp

∂2R

∂kO∂kI
= −2

−→
Cp
′
(

∂2H

∂kI∂kO

)′−−−−→
TACs

+ 2
−→
Cp
′
(

∂2H

∂kI∂kO

)′
H
−→
Cp + 2

−→
Cp
′ ( ∂H

∂kI

)′ ∂H

∂kO

−→
Cp

∂2R

∂k2
O

= −2
−→
Cp
′
(

∂2H

∂k2
O

)′−−−−→
TACs + 2

−→
Cp
′
(

∂2H

∂k2
O

)′
H
−→
Cp

+ 2
−→
Cp
′ ( ∂H

∂kO

)′ ∂H

∂kO

−→
Cp

∂2R

∂kI∂ ˆCpn

= −2[0 . . . 1nth . . . 0]
(

∂H

∂kI

)′−−−−→
TACs

+ 2[0 . . . 1nth . . . 0]
(

∂H

∂kI

)′
H
−→
Cp

+ 2
−→
Cp
′ ( ∂H

∂kI

)′
H[0 . . . 1nth . . . 0]′

∂2R

∂kO∂ ˆCpn

= −2[0 . . . 1nth . . . 0]
(

∂H

∂kO

)′−−−−→
TACs

+ 2[0 . . . 1nth . . . 0]
(

∂H

∂kO

)′
H
−→
Cp

+ 2
−→
Cp
′ ( ∂H

∂kO

)′
H[0 . . . 1nth . . . 0]′ (14)

where “ ′ ” denotes the transpose. The terms ∂H
∂kI

, ∂H
∂kO

, ∂2

∂kI∂kO
H,

∂2

∂k2
O

H can be calculated using the compartment model:

∂H

∂kI
= Convmatrix[e−kOt],

∂H

∂kO
= Convmatrix[−kIte−kOt],

∂2

∂kI∂kO
H = Convmatrix[−te−kOt],

∂2

∂k2
O

H = Convmatrix[kIt2e−kOt], (15)

where “Convmatrix” denotes an operation converting a vector to its
corresponding convolution matrix.

Because of the presence of kI and kO in the terms ∂kI

∂ ˆCpn
and

∂kO

∂ ˆCpn
, we cannot simply integrate ∂kI

∂ ˆCpn
Δ ˆCpn and ∂kO

∂ ˆCpn
Δ ˆCpn to ob-

tain the errors in the kinetic parameter estimates. However, we can
calculate ∂kI

∂ ˆCpn
and ∂kO

∂ ˆCpn
at a fixed point of ˆCpn , and a sequential

procedure can be applied to calculate a new value of kI and kO, and
we can use them to evaluate ∂kI

∂ ˆCpn
and ∂kO

∂ ˆCpn
at the next Cp value

until the complete range of ΔCp is covered. This procedure can be
performed by methods such as Runge-Kutta methods, predictor-
corrector method and Richardson extrapolation. In this paper, we
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modify regular Runge-Kutta methods [7] for ODE to adapt to partial
differential equations. By far the most common approximation is the
fourth-order Runge-Kutta approximation.

k1,i = hfi(Cpn , kI , kO)

k2,i = hfi(Cpn +
h

2
, kI +

k1,1

2
, kO +

k1,2

2
)

k3,i = hfi(Cpn +
h

2
, kI +

k2,1

2
, kO +

k2,2

2
)

k4,i = hfi(Cpn + h, kI + k3,1, kO + k3,2)

yi(Cpn + h) = yi(Cpn) +
k1,i

6
+

k2,i

3
+

k3,i

3
+

k4,i

6
, (16)

where i = 1, 2 for kI and kO, h is the small step size we define
according to the demand on accuracy and speed, and

f1 =

[
− ∂2

∂kI∂ ˆCpn
R ∂2

∂kI∂kO
R

− ∂2

∂kO∂ ˆCpn
R ∂2

∂k2
O

R

]
∣∣∣∣∣

∂2

∂k2
I

R ∂2

∂kI∂kO
R

∂2

∂kO∂kI
R ∂2

∂k2
O

R

∣∣∣∣∣
,

f2 =

[
∂2

∂k2
I

R − ∂2

∂kI∂ ˆCpn
R

∂2

∂kO∂kI
R − ∂2

∂kO∂ ˆCpn
R

]
∣∣∣∣∣

∂2

∂k2
I

R ∂2

∂kI∂kO
R

∂2

∂kO∂kI
R ∂2

∂k2
O

R

∣∣∣∣∣
. (17)

Let us define

kIstart = y1(Cpn),

kOstart = y2(Cpn),

kIafter one step = y1(Cpn + h),

kOafter one step = y2(Cpn + h). (18)

In multi-dimension, we perform the calculations N times for every
Cpn for a single step

kIafter one step = kIcurrent +

N∑
n=1

∂kI

∂ ˆCpn

Δ ˆCpn ,

kOafter one step = kOcurrent +

N∑
n=1

∂kO

∂ ˆCpn

Δ ˆCpn . (19)

This completes the calculation of the errors in kI and kO stem-
ming from the error in estimation of Cpn with error bound being
O(h5).

3. COMPUTER SIMULATIONS
We apply the proposed mathematical model to simulated data with
t = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5, 7.0, 10.0,
15.0, 20.0, 30.0, 60.0, 90.0, 120.0]. and kI = 1.0, kO = 0.8.

We have performed two sets of experiments. For these three
experiments, we set an error margin for Cpn and compare the pro-
pogated errors in kI and kO using the derived expressions and op-
timization. We use CGM for optimization.

First, we test the mathematical model in one dimension and as-
sume that one of the 19 samples of Cpn has an error up to 30%

defined as Cpn (error)−Cpn (true)

Cpn (true)
. Figure 1 shows a comparison of

Fig. 1. Comparison between the estimated kI and kO using the
derived expressions and optimization for a range of errenous blood
functions. A single sample out of 19 samples of Cpn has an error.
The results are given for four random samples.

the results from the derived expressions and optimization for four
random samples of Cp. We observe that the derived expressions
provide very accurate approximations of the the errors in kI and kO.

For several of the blind methods, the error in the blood function
is usually not confined in a single sample. Therefore in our second
experiment, we use a blood function with multiple errenous sam-
ples. The blood function is divided into two parts: (i) the initial peak
and (i) the tail part. Based on this grouping three cases of errors are
considered: Case I, all samples; Case II, initial peak with samples 1
to 13; Case III, tail part with samples 14 to 19. All errenous sample
have the same error rate ranging from 0 to 30%.

Figure 2 shows that the results from the derived expressions is
very close to ones from numerical optimization. When all 19 sam-
ples have the same error rate from 0 to 30%, we can see that the
error in kO is negligibly small while kI changes from 1.0 to 0.7692
with numerical optimization and 0.7688 with the derived expres-
sions. This can be explained with (3) where scaling in the blood
function would not affect kO but inversely scale kI . For case II, we
observe that kI deviates from the true value more than kO, indicat-
ing that the error in the initial peak affects the estimation of kinetic
parameter kI more than kO. For case III, we observe a reversed
effect; the error in the tail part affects the estimation of kinetic pa-
rameter kO more than kI .

These simulation results show that the derived expressions pro-
vide a very accurate approximation of the errors in the kinetic pa-
rameters, and several useful observations related to the effect of
the blood function on the kinetic parameter estimates can be made.

4. SUMMARY
In this paper, we have derived mathematical expressions that quan-
tify how errors in the blood estimate propogate into errors in the
kinetic parameter estimates. Computer simulations show that the
proposed mathematical model can yield accurate estimates of the
errors in kI and kO. Results can easily be generalized to more
complicated compartment models.

The developed method can quantify the errors in the kinetic pa-
rameters for different error combinations in the blood function, with-
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out having to perform optimization for each of the error cases to
be analyzed. This would be computationally prohibitive especially
for pixel by pixel kinetic parameter estimation, and large ranges of
blood error to be analyzed. Future work includes generalization to
estimation based on the sinogram instead of reconstructed TAC’s,
and application to real PET data.
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blood is errenous, middle two when the initial peak is errenous, and
the bottom two when the tail part is errenous.

1588


